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Interannual variability in global soil respiration, 1980-94
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Abstract

We used a climate-driven regression model to develop spatially resolved estimates of
s0il-CO, emissions from the terrestrial land surface for each month from January 1980 to
December 1994, to evaluate the effects of interannual variations in climate on global soil-
to-atmosphere CO, fluxes. The mean annual global so0il-CO, flux over this 15-y period
was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global so0il-CO,
emissions followed closely the mean temperature cycle of the Northern Hemisphere.
Globally, s0il-CO, emissions reached their minima in February and peaked in July and
August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-
derived CO; to the atmosphere than did any other vegetation type (~30% of the total) and
exhibited abiannual cycle in their emissions. S0il-CO, emissions in other biomes exhibited
a single annual cycle that paralleled the seasonal temperature cycle. Interannual variabil-
ity in estimated global so0il-CO, production is substantially less than is variability in net
carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer
atmospheric CO, concentrations against far more dramatic seasonal and interannual
differences in plant growth. Within seasonally dry biomes (savannas, bushlands and
deserts), interannual variability in soil-CO, emissions correlated significantly with inter-
annual differences in precipitation. At the global scale, however, annual s0il-CO, fluxes
correlated with mean annual temperature, with a slope of 3.3PgCy ' per °C. Although
the distribution of precipitation influences seasonal and spatial patterns of so0il-CO,
emissions, global warming is likely to stimulate CO, emissions from soils.
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Introduction

Increasing atmospheric CO, concentrations have en-
hanced our need to understand better the global sources
and sinks of carbon, and their responses to environmen-
tal changes. The dominant terrestrial source of CO, is
soils. Carbon dioxide is produced in soils primarily by
heterotrophic organisms and by respiration of living
roots, and most CO, produced in soils is released to the
atmosphere. This process, commonly called soil respir-
ation, produces 75-80 Pg of CO,—-C annually (Schlesinger,
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1977; Raich & Potter, 1995). This is more than 11 times the
current rate of fossil fuel combustion (Marland et al.,
2000) and indicates that ~10% of the atmosphere’s CO,
cycles through soils each year. Environmental changes
that alter rates of soil respiration thus have a strong
potential to influence atmospheric CO, levels.
Temperature has a strong impact on soil respiration
rates, and the potential for increased rates of CO, pro-
duction by soils in response to global warming suggests
that a positive feedback between global warming and
atmospheric CO, concentrations could arise (Schleser,
1982; Jenkinson et al., 1991; Raich & Schlesinger, 1992;
Trumbore et al., 1996; Kirschbaum, 2000; Schlesinger &
Andrews, 2000). Soil respiration is also controlled by
moisture availability, with dry soils producing less CO,
than wet soils (Parker et al., 1984; Davidson et al., 2000;
Mielnick & Dugas, 2000). Hence, changes in moisture
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availability, driven by changing precipitation patterns,
have the potential to offset or exacerbate temperature-
driven changes in s0il-CO, emissions (e.g., Saleska et al.,
1999). Both global temperatures and precipitation
patterns are expected to change in the future (e.g.,
Houghton, 1997), potentially altering CO, fluxes from
soils. To evaluate the sensitivity of soil-CO, emissions to
climatic variability, we developed spatially resolved esti-
mates of global soil respiration using a monthly time-step
from 1980 to 1994. This period included both wet and dry
years, and six of the warmest years recorded to that time
(Jones et al., 2000).

Materials and methods

We estimated the seasonal and spatial distribution of
global s0il-CO, emissions following the regression-
based modeling approach of Raich & Potter (1995). This
approach differs fundamentally from that of process-
based ecosystem models, which simulate changes in
state variables and elemental fluxes through time, but
which also contain the many parameters needed to do
so. Our model contains only three parameters, each of
which is defined statistically using least-squares ap-
proaches, and is driven solely by weather data. Our
model also predicts directly a single, widely measured
flux—soil respiration—in contrast to ecosystem models
that separately predict CO, production by heterotrophic
soil organisms and by living roots, neither of which is
measured directly in any intact ecosystem. One benefit of
our approach is that the model predictions provide a truly
independent, spatially and temporally resolved global
dataset of s0il-CO, emissions that can be used to corrobor-
ate the predictions of more complex ecosystem models.
The models of Raich & Potter (1995) were based on
regressions of measured soil respiration rates against
mean monthly air temperature and rainfall data.
However, many of the soil respiration measurements
used to determine the model parameters were obtained
with static-chamber methods that may underestimate
true soil respiration rates (e.g., Ewel et al., 1987; Rochette
et al., 1992b; Norman et al., 1997). We therefore recalcu-
lated the model parameters based on a new and largely
independent data set of soil respiration measurements
made almost entirely with dynamic, IRGA-based
systems. To do so, we compiled published measurements
of soil respiration made with dynamic chambers coupled
to IRGA-based CO, measurement devices (Table 1). Each
measurement was referenced to the month in which it
was made and the site location. When more than one
measurement was made within a particular site and
month, those data were averaged to estimate the mean
monthly s0il-CO, flux for that month and site. When
publications included data from more than one site at
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the same location (i.e., sites on different soils or with
different vegetation covers), each site was incorporated
into our database. For each location and month for which
we found published soil respiration data, we appended
mean monthly air temperature and precipitation data for
the 1980-94 period based on New et al. (2000). Due to the
paucity of dynamic-chamber data from arid regions, we
included static-chamber measurements from deserts
(Caldwell et al., 1977; Parker et al., 1983). We also included
measurements of CO, emissions from snow-covered soils
derived with a variety of techniques (Sommerfeld ef al.,
1993; Zimov et al., 1993; Winston et al., 1997). We did not
distinguish disturbed sites from those containing natural
vegetation, nor did we include any data from wetlands.
Our final data set encompassed mean monthly air tem-
peratures ranging from —33.4 to 27.6 °C, mean monthly
precipitation levels of 0.8-47.3cm, and measured soil-
CO, emissions ranging from 0.03 to 9.84 gCrrf2 d.

The model B of Raich & Potter (1995) contains three
parameters: F (g C m2d™) represents the soil respiration
rate when the mean monthly air temperature is 0°C; Q
(°C™ ") defines the rate of change of the soil respiration
rate with respect to temperature; and K (mmmo ') is the
half-saturation constant for a hyperbolic relationship be-
tween soil respiration and rainfall:

Rs = F x ¢ @To) » [P/(K + P)] (1)

In this equation Rg refers to the mean monthly soil-CO,
efflux in ng_2 dY, T, refers to the mean monthly air
temperature (°C), and P is the mean monthly precipita-
tion (cm) for the period 1980-94. We used this equation
and our new, IRGA-derived soil respiration data set to
determine new model parameters, using the non-linear
regression option of SYSTAT (Wilkinson 1990). The
resulting model was:

Ry = 1.250 x (005452:T2) 5 [P/(4.259 + P)] (2)

(n=335, r*=0.62). In comparison with the model of
Raich & Potter (1995) our new parameters suggest a
slightly lower basal respiration rate (F=1.250 vs. 1.334),
a greater temperature sensitivity (Q=0.05452 vs.
0.03992), and a much greater importance of precipitation
(K=4.259 vs. 1.634). Thus, our newly parameterized
model should be more sensitive to climatic fluctuations
than was that of Raich & Potter (1995).

We used eq. (2) to predict mean monthly soil respir-
ation rates (Rg) from climate (P and T,) for each of 67420
grid cells (0.5° latitude x 0.5° longitude) covering a total
146.6 x 10°km? of land, excluding Antarctica. Monthly
air temperatures (T,) and precipitation (P) data for
January 1980-December 1994 were obtained from New
et al. (2000). We assumed that Rg was equal to 0 at tem-
peratures <—13.3°C, and was maximum at temperatures
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Table1 Site descriptions, locations, and sources of in situ soil respiration measurements used to develop our

regression model (eq. 2)

Vegetation or Land Cover Latitude Longitude Reference

snow 69 -162 Zimov et al. (1993)

old black spruce 55.7 -97.9 Winston et al. (1997)

two jack pine stands 55.7 -97.9 Winston et al. (1997)
clearcut jack pine 53.9 —104.7 Striegl & Wickland (1998)
jack pine woodland 53.9 —104.7 Striegl & Wickland (1998)
mixed forest 454 -75.7 Lessard et al. (1994)
maize 454 —75.7 Lessard et al. (1994)
maize 45.4 —75.7 Rochette ef al. (1999)
broadleaf forest 45.2 -93.0 Reiners (1968)

broadleaf forest, well drained 425 —72.2 Davidson et al. (1998)
broadleaf forest, poorly drained 42.5 —72.2 Davidson et al. (1998)
two desert shrub sites 419 —113.1 Caldwell et al. (1977)
alpine meadow under snow 41.3 —106.3 Sommerfeld et al. (1993)
Quercus ilex woodland, 2 sites 412 0.9 Pinol et al. (1995)

five aspen stands 41 —106 Smith & Resh (1999)
three grassland sites 39.1 —16.6 Bremer et al. (1998)

four oak forest sites 36.0 —84.3 Hanson et al. (1993)
Liriodendron forest 35.6 —84.2 Edwards & Harris (1977)
two Cryptomeria plantations 32.8 130.7 Ohashi et al. (1999)
desert 325 —106.8 Parker et al. (1983)

two pine plantations 29.7 —82.2 Ewel et al. (1987)
tropical seasonal forest 9.2 -79.9 Kursar (1989)

tropical seasonal forest -3.0 —47.5 Davidson et al. (2000)
secondary forest -3.0 —47.5 Davidson et al. (2000)
two pasture sites -3.0 —47.5 Davidson et al. (2000)

=33.5°C., as did Raich & Potter (1995). Land cover was
derived from DeFries et al. (1998) by resampling their 8-
km grid data to dominant land cover in half-degree cells.
Polar land cells without vegetation (polar ice and rock
land, total area = 3.4 x 10°km?) were assumed to have no
soil respiration; this included most of Greenland. We did
not modify our estimates for wetland coverage, but Raich
& Potter (1995) found that wetlands had minor impacts
on total global soil-CO, emissions. We tested our model
by comparing predicted so0il-CO, emissions with pub-
lished measurements gathered from studies that were
not used to define the parameters of our regression
model.

Results

Testing the model

Comparing measured soil-CO, emissions with model
predictions (Fig. 1) requires an awareness that the
observed and predicted fluxes are fundamentally differ-
ent. Model predictions refer to mean fluxes over entire
half-degree grid cells containing many vegetation types,
soils, etc., whereas measurements are made on specific

plots within those grid cells (e.g., Savage et al. 1997). For
instance, the data from New Hampshire (Fig. 1a) were
collected within a forest preserve, whereas much of the
local landscape is disturbed. Further, most investigators
measure soil respiration for no more than a few days per
month, whereas our model predicts mean monthly
fluxes. There are also obvious discrepancies between the
global climate data used to drive the model and observed
weather. In both Texas (Fig. 1d) and Thailand (Fig. 1e) the
climate database showed no precipitation during some
months, generating predictions of zero soil respira-
tion. Each of these problems will diminish as more soil
respiration measurements are made and global databases
improve.

Given these caveats, model predictions captured rea-
sonably well both the seasonal patterns in soil-CO, emis-
sions, and the magnitudes of fluxes observed in a variety
of sites at different locations (Fig. 1). Mean square errors
of these predictions (Fig. 1), calculated as the average of
all (observed—predicted)2 values for each month over
which measurements were made, ranged from 0.1 in
Fig. 1(c) to 6.2 in Fig. 1(d). In calculating the MSE we
averaged measurements from multiple sites within grid
cells, when necessary, to determine the unweighted mean
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Fig.1 Comparisons between estimated (©) and measured (solid symbols) s0il-CO, emissions in various locations. (a) Data from a mixed
deciduous forest in New Hampshire, based on Table 2 of Crill (1991). (b) Data from barley (@) and fallow (A) fields in Ottawa, Canada,
based on Table 2 of Rochette et al. (1992a). (c) Data from spruce (@), aspen (A), and pine (M) woodlands in Manitoba, as estimated from
Fig.3 of Savage et al. (1997). (d) Data from a tallgrass prairie in Texas, as estimated from Fig. 3 in Mielnick & Dugas (2000). (e) Data from
upland cultivation (@), seasonal forest (A), and shifting cultivation (M) sites in Thailand, as estimated from Fig.1 in Tulaphitak et al.
(1985). (f) Data from forest (@) and pasture (A) sites in Para, Brazil, based on Table 2 of Davidson & Trumbore (1995). (g) Data from taiga
forest stands in interior Alaska, as estimated from Fig. 1 in Gulledge & Schimel (2000): floodplain alder (®); floodplain white spruce (A);
upland birch and aspen (M); and upland white spruce (V).
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observed value. The regression-based nature of our
model predisposes it for use across the entire range of
monthly climates encompassed by the underlying data.

Seasonality of s0il-CO, emissions

Over 1980-94 predicted global-scale soil-CO, emissions
followed closely the seasonal temperature cycle (Fig. 2).
Nevertheless, the influence of precipitation on CO, emis-
sions was evident, as seen in the ragged nature of the
predicted soil respiration cycle (Fig. 2). Across all
15 years, global s0il-CO, emissions were minimal during
February and maximal during July and August (Fig. 3a).
Variability in predicted emissions was greatest in March
and minimal in September (Fig. 3a). Deviations in soil
respiration, defined for each month as the predicted
global s0il-CO, efflux minus the monthly mean efflux
(based on n=15 for each month) correlated directly
with deviations in precipitation (Fig.3b; r=0.58, P <0.02
assuming 14 d.f.), but not with temperature deviations
(r=0.29). This indicates that the global-scale variability
seen within months among years was due primarily to
variations in precipitation.

Tropical and north-temperate regions had substan-
tially larger soil respiration fluxes than did other latitu-
dinal belts (Fig. 4). Soil-CO, emissions from the 0-30°S
latitude belt were maximal during the Northern
Hemisphere’s winter (Fig. 4), when global emissions
were minimal (Fig. 2). Thus, the Northern Hemisphere
dominated the global soil-CO, flux, due largely to its
disproportionate share of land area.

All land-cover types showed seasonality in their soil-
CO, emissions (Fig. 5), in most cases following the annual
temperature cycle of the Northern Hemisphere.
Evergreen broad-leaved forests, however, exhibited two
annual maxima (Fig. 5) that apparently reflect temporally
offset contributions from the northern and southern
tropics; minima occurred in February and July,
1-2 months after the winter and summer solstices.

Annual soil-CO, emissions

From 1980 to 1994 global soil respiration was predicted to
average 80.4PgCy ' (Table 2). Among land-cover types,
evergreen broad-leaved forests had the highest rates of
s0il-CO, production throughout this 15-y period (Fig. 5)
and contributed far more soil-respired CO, than did any
other vegetation type (Table 2). Although interannual
variability in global soil-CO, emissions was relatively
low (CV=1%, Table 2), it was relatively high within
barren lands, deciduous needleleaf forests, and closed
bushlands and shrublands (Table 2). In the latter case,
estimated annual emissions correlated directly with
annual precipitation (r=0.81, P <0.01), suggesting that

interannual variations in precipitation were responsible
for the interannual variability in predicted soil-CO,
fluxes in that biome. This was true also in evergreen
broadleaf forests, in wooded grasslands and shrublands
(i.e., savannas), in open shrublands, and in barren lands
(r=0.53, 0.51, 0.87 and 0.96, respectively). In contrast,
annual so0il-CO, emissions correlated most closely with
mean annual temperatures in croplands (r=0.67,
P <0.01). Permanent croplands could be buffered from
the effects of interannual precipitation variability if they
are more widespread in regions with dependable precipi-
tation. However, since many croplands are irrigated, our
results for that biome may be biased by our use of pre-
cipitation inputs alone as a measure of water availability.

Despite correlations between precipitation variability
and predicted s0il-CO, emissions within specific biomes,
there was no correlation between estimated annual global
s0il-CO, emissions and global precipitation. Precipitation
controls over global soil-CO, emissions seem to be re-
stricted to regional scales, with spatial differences cancel-
ing one another out at the global scale. Among years,
estimated total global soil respiration correlated signifi-
cantly with air temperature over land (r=0.87, Fig. 6), but
not with precipitation (r =0.18). Nor did the residuals of
the temperature relationship correlate with precipitation
(r=-0.20). This was true despite that our model was
very sensitive to low amounts of precipitation (e.g.,
Fig.1d,e) and ignored soil moisture storage, which may
buffer ecosystem processes against precipitation deficits
(e.g., Raich et al., 1991). On average, so0il-CO, emissions
increased 3.3PgCy ' for each 1°C increase in the mean
temperature over land.

Discussion

From 1980 to 1994, mean global soil respiration was esti-
mated to average 80.4 PgCy . Using the same approach,
Raich & Potter (1995) estimated the long-term average
global soil respiration to be 77.1PgCy '. However, this
is not evidence that s0il-CO, emissions have increased in
recent years. There are three main differences between
our current predictions and those of Raich & Potter
(1995). We used more recent land cover and climate
data, we recalculated the model parameters using more
recent soil respiration data, and we used monthly
weather data instead of mean monthly weather data.
We used the model parameters of Raich & Potter (1995)
to estimate soil respiration for the 1980-94 period, using
our current climate database, and found that global soil-
CO, emissions averaged 82.4 + 0.5 PgCy’l. This higher
estimate resulted primarily from the higher basal respir-
ation rate (F= 1.334ng’2 d™) in the 1995 parameter
set. We also predicted global emissions using our new
model parameters, but driven by mean (1980-94)

© 2002 Blackwell Science Ltd, Global Change Biology, 8, 800-812
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monthly climate data. In that case, global soil respiration
was estimated to be 83.8PgCy !, 3.4 Pg larger than the
mean of the individual-year estimates. This overestimate
is a result of our hyperbolic precipitation function (eq. 2);
drier-than-average months diminish predicted soil-CO,
emissions more than wetter-than-average months stimu-
late them. Our current estimate of a mean annual global
s0il-CO, efflux of 80.4 + 0.4 PgC is therefore an improve-
ment in many respects, but applies to 1980-94 only,
and we cannot estimate the mean pre-1980 flux from
our data.

Interannual variability in the global carbon cycle

Over the 15-y period considered, the difference between
the estimated maximum and minimum annual global
s0il-CO, emissions was 2.6 PgC. By comparing this with
other global C flux estimates, we can evaluate the relative
impact that interannual differences in soil-CO, fluxes
may have on atmospheric CO, anomalies. Annual in-
creases in the atmospheric CO, pool between 1981 and
1992 varied (maximum-minimum) by 3.95Pg C (Conway
et al., 1994). Estimates of the interannual variability

© 2002 Blackwell Science Ltd, Global Change Biology, 8, 800-812

(maximum-minimum) in net annual CO, uptake by the
oceans range from c. 4 (Francey et al., 1995; Keeling et al.,
1995) to <1PgCy ' (Lee et al., 1998) during 1982-95. If
the estimates of Lee et al. (1998) are correct, then inter-
annual differences in the amplitude of the atmospheric
CO, signal are driven primarily by interannual differ-
ences in terrestrial C fluxes.

Keeling et al. (1995) estimated that terrestrial biosphere
between 1980 and 1994 varied from a CO, sink of
2.5 PgCyf1 to a CO, source of 2.6 PgCyfl, which sug-
gest a variability that is twice as great as that we pre-
dicted for soil respiration. From 1983 to 1988 global
terrestrial net primary productivity (NPP) was estimated
to range from 53.9 to 59.4PgCy !, and heterotrophic
respiration from 55.9 to 58.5 PgCyf1 (Potter & Klooster,
1998). This latter estimate has the same variability as do
our estimates of soil respiration, which includes CO,
derived from live root respiration. Terrestrial NPP is
even more variable according to Maisongrande et al.
(1995), who predicted that annual NPP varied
(maximum-minimum) by 10.8 PgC from 1986 to 1991.
Kindermann et al. (1996) found that NPP from 1980 to
1993 varied (maximum-minimum) by 4.7PgCy ',
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whereas heterotrophic respiration (which they termed
soil respiration) varied by 1.0PgCy . In all these cases,
the estimated interannual variability in net plant CO,
uptake (NPP) is more than twice what we predicted for
s0il-CO, emissions, which is itself less than variability in
the atmospheric CO, pool. We conclude from this that
soils buffer fluctuations in atmospheric CO, concentra-
tions by providing relatively consistent, year-round sup-
plies of CO, that dampen the effects of more extreme
intra- and interannual variations in plant C uptake. This
conclusion is consistent with Potter & Klooster (1998),
who suggested that Ry fluxes dampened net CO, fluxes
from the terrestrial biosphere to the atmosphere, with
about a two-year lag period relative to NPP.

Soil respiration and global warming

Despite relatively low interannual variability in global
s0il-CO, emissions (Table 2), climatic variability did
affect our emission estimates. Within seasonally dry
biomes (i.e., savannas, closed bushlands and shrublands,

monthly value minus the mean value for that month
over the 15-month period.

open shrublands, and barren lands), annual precipitation
correlated directly with estimated annual soil-CO, emis-
sions. At the monthly scale, deviations in estimated
global soil respiration correlated positively with devi-
ations in precipitation (Fig. 3b). Thus, seasonal and
annual variations in precipitation influence the spatial
and seasonal dynamics of estimated soil-CO, emissions.
However, these dynamics are largely lost at the global-
annual scale: interannual differences in estimated global
soil respiration correlated significantly with temperature
(Fig. 6), but not with precipitation. Higher mean tempera-
tures stimulated global soil CO, emissions by an average
of 3.3PgCy ' per °C over the mean global temperature
range 13.0-13.7°C.

These results do not contradict directly the proposition
that soil C turnover rates are independent of temperature
(Giardina & Ryan, 2000). Higher so0il-CO, fluxes in re-
sponse to higher temperatures can result either from
increased loss rates of detrital C, or from emissions
resulting from increased C inputs to the soil. For instance,
if root respiration rates increase in response to higher

© 2002 Blackwell Science Ltd, Global Change Biology, 8, 800-812
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Fig.4 Estimated monthly soil respiration for each 30° latitudinal belt from the North Pole to 60°S latitude. No predictions were made for

Antarctica.

temperatures (e.g., Boone et al., 1998), soil respiration
rates may increase even if there are no changes in soil C
stocks. An analogous example is provided from the Duke
Forest free-air CO, enrichment (FACE) study, where in-
creased CO; enhanced soil respiration rates primarily by
stimulating C fluxes through roots (Andrews et al., 1999;
Andrews & Schlesinger, 2001) without apparently

altering soil organic matter storage.

© 2002 Blackwell Science Ltd, Global Change Biology, 8, 800-812

Our finding that higher temperatures will promote
higher rates of soil respiration is consistent with the
hypothesis that warmer temperatures will promote net
losses of soil organic C (Schleser, 1982; Townsend et al.,
1992; Trumbore et al., 1996; Schlesinger & Andrews, 2000).
Previous analyses suggest that a 1 °C increase in the mean
temperature would lead to global soil C losses ranging
from 11 to 33PgC (Jenkinson et al., 1991; Schimel et al.,
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Table 2 Areal extent and estimated mean annual global soil respiration, mean annual temperature, and mean annual precipitation for
each of 14 land-cover types defined in our database. All grid cells were 0.5° latitude x 0.5° longitude. All soil respiration, temperature, and
precipitation data refer to means over the period January 1980-December 1994

Land-cover type’ Number of  Area Soil Respiration MAT? MAP*
grid cells (km?) (PgC y_l) (°Q) (mm y_l)
Mean CV (%) Mean CV (%) Mean CV (%)
1 - Evergreen needleleaf forests 5778 10705 600 412 2.0 3.1 3.3 816 0.7
2 — Evergreen broadleaf forests 5770 17394748 22.94 1.1 24.6 0.2 2214 0.7
3 — Deciduous needleleaf forests 1728 2624313 0.59 3.8 —6.9 33 425 1.3
4 — Deciduous broadleaf forests 1987 4669196 3.43 14 13.9 0.5 1141 04
5 — Mixed forests 2793 5612332 2.51 2.4 52 2.0 842 1.0
6 — Woodlands 7524 17642765 12.53 0.8 15.4 0.3 1031 0.7
7 —Wooded grasslands/shrublands 3813 10927 601 7.95 1.2 23.5 0.2 846 0.9
8 — Closed bushlands or shrublands 1968 5525457 2.75 35 21.5 0.2 429 1.4
9 — Open shrublands 4903 13017205 422 3.0 18.1 0.3 264 0.9
10 — Grasses 7748 17333777 7.11 1.9 8.9 0.9 588 0.5
11 - Croplands 5514 12985531 8.08 1.1 13.7 0.5 925 0.5
12 — Bare 5562 15385568 2.76 7.6 16.0 0.5 123 2.0
13 — Mosses and lichens 7881 9329759 1.43 2.8 -10.5 1.3 351 0.7
14 — Polar ice and rockland 4451 3406453 0§ - - - - -
Global land totalq 67420 146 560303 80.41 1.0 13.3 0.4 823 0.4

*Following DeFries et al. (1998). Polar ice and rockland was defined as Type 12 located north of 60°N latitude. fArea-weighted mean
annual temperature over land. {Area-weighted mean annual precipitation on land. §We assumed that there was no soil respiration from
polar ice and rockland. "Antarctica is excluded from all columns.
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o
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v 80 | .
e ° i .
. °. r=0.87 -
Fig.6 Estimated annual global soil respiration shown ® P<0.0001 .
in relationship to the mean annual air temperature 79 S
over land. The equation of the least-squares linear 12.9 13.1 13.3 13.5 13.7

regression between temperature (T) and Rg is:
Rs=36.2+3.32x T (n=15, *=0.75, P <0.0001).

1994). Our work differs fundamentally from these
previous studies in many ways. For example, we do not
have soil organic matter in our model. Also, previous
estimates refer to cumulative C losses through time,
whereas ours refer to the short-term responses of soils
to interannual climate variability. Therefore, our results
do not provide evidence that previous studies have
overestimated soil C losses in response to global
warming.

© 2002 Blackwell Science Ltd, Global Change Biology, 8, 800-812

Temperature (C)

Soil respiration and the global carbon cycle

Our approach is based on statistical analyses of in situ soil
respiration measurements gathered within intact ecosys-
tems in many locations under widely differing climatic
conditions, land uses, and vegetation covers (Table 1).
Should global warming occur, it will occur one year at a
time, and it will be accompanied by changes in precipita-
tion. Thus, our analysis of the effects of recent climatic
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variability on soil-CO, fluxes is appropriate for evaluat-
ing the potential responses of soils to climatic changes.
Based on summary data from the EUROFLUX project,
Janssens et al. (2001) reported that, whereas temperature
was the dominant variable influencing seasonal patterns
of soil respiration within non-water-stressed forests,
mean annual temperature did not correlate with ob-
served rates of soil respiration among forests. Rather,
differences in soil respiration among sites correlated
with ecosystem C fluxes (i.e., gross primary productivity)
(Janssens et al., 2001), and differences among sites in net
ecosystem productivity were controlled more by dif-
ferences in ecosystem respiration than production
(Valentini et al., 2000). The significant correlation between
rates of plant production and soil respiration has long been
recognized (Schlesinger, 1977; Raich & Nadelhoffer, 1989;
Raich & Schlesinger, 1992; Raich & Tufekcioglu, 2000), but
plant productivity is highly dependent upon both tem-
perature and moisture availability (e.g., Lieth, 1973), as is
soil respiration. Our regression-based model did not in-
corporate factors such as soil type, species composition,
or other non-climatic variables that influence plant prod-
uctivity in individual sites, but rather incorporated inter-
site variations in such factors within the model param-
eters. More complex models that incorporate additional
factors that influence plant production may provide
better-resolved estimates of soil respiration by explaining
some of the inter-site variability not encompassed within
our model. Clearly, future changes in soil and ecosystem
carbon fluxes will depend upon factors other than just
temperature and rainfall, and more complex models are
needed to fully assess the responses of terrestrial ecosys-
tems to multiple environmental changes (e.g., Cramer
et al, 2001). Nevertheless, our model does provide
global-scale estimates of mean fluxes, and how they
vary among years based on variations in weather. Our
model also provides an independently derived, statistic-
ally based, spatially and temporally resolved database
against which the predictions of more complex, and
more difficult-to-parameterize models, can be compared.
Using the CASA model, Potter & Klooster (1998) esti-
mated that NPP from 1983 to 1988 averaged 57.6 PgCy ',
and that Ry averaged 57.1PgCy '. Over the same
period, we estimated that soil respiration averaged
80.0 PgCyfl. The difference between Ry and Rs,
ie., 23 PgCy’l, provides an estimate of global root res-
piration. Thus, globally, about 30% of soil respiration can
be attributed to the respiration of live roots. This is lower
than the overall mean of 50% found in forests (Hanson
et al., 2000), which covered 28% of the land area in our
global database. However, estimates of root respiration
vary widely among studies, and include heterotrophic
respiration of rhizosphere organisms (Hanson et al.,
2000), whereas our 30% estimate is for autotrophic

respiration only. Additionally, root respiration contribu-
tions to total soil respiration vary among land-cover
types, with estimates ranging from 12% to 38% in crop-
lands to 50-93% in arctic tundra (Raich & Tufekcioglu,
2000). Our global mean masks such inter-site variations.
Despite its importance, this flux often is missing from
terrestrial C models.

In conclusion, our results suggest that soil-CO, emis-
sions increase with increasing global temperature, and
that variations in the timing and distribution of precipi-
tation do not override this basic global pattern. This
finding may suggest either that soils are losing organic
C in response to global warming or that soil C cycles
faster (i.e., more inputs and outputs) as temperatures
increase. Either way, the warm global temperatures of
the 1980s and 1990s appear to have already altered the
terrestrial C cycle.
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